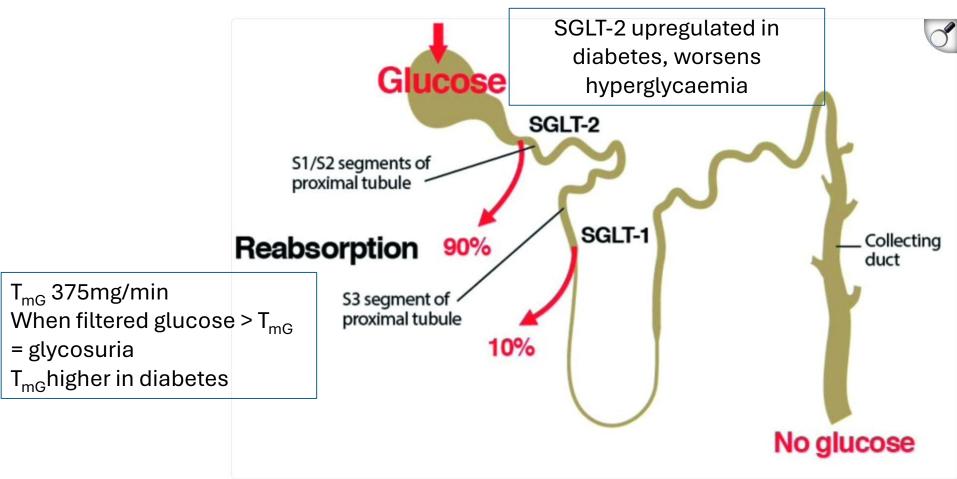
Role of SGLT-2 inhibitors in diabetes

RCP update, May 2025

Dr Danijela Tatovic FRCP PhD

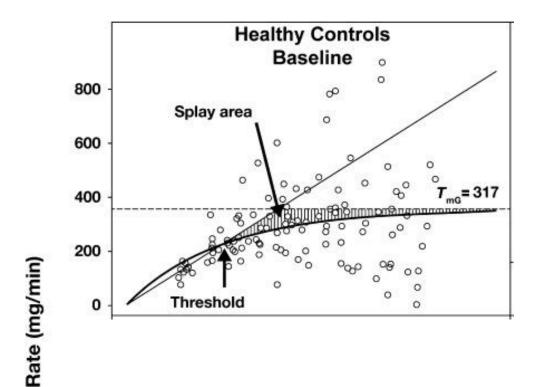
Southmead Hospital, NBT, Bristol
Consultant in Diabetes and Endocrinology

Cardiff University, Cardiff Clinical Senior Lecturer

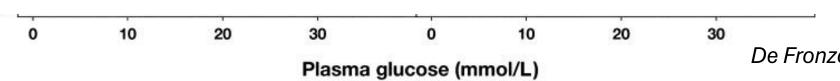

Declaration for Dr Danijela Tatovic

I have the following financial interest or relationship/s to disclose with regard to the subject matter of this presentation:

- Consulting fees: NA
- Research contracts: Funded by BreakthroughT1D/Steve Morgan Foundation
- Clinical trial steering committee: NA
- Owner/stockholder of healthcare company/ies: NA
- Other [please specify activity]: Trustee of NovoNordisk UK Research Foundation

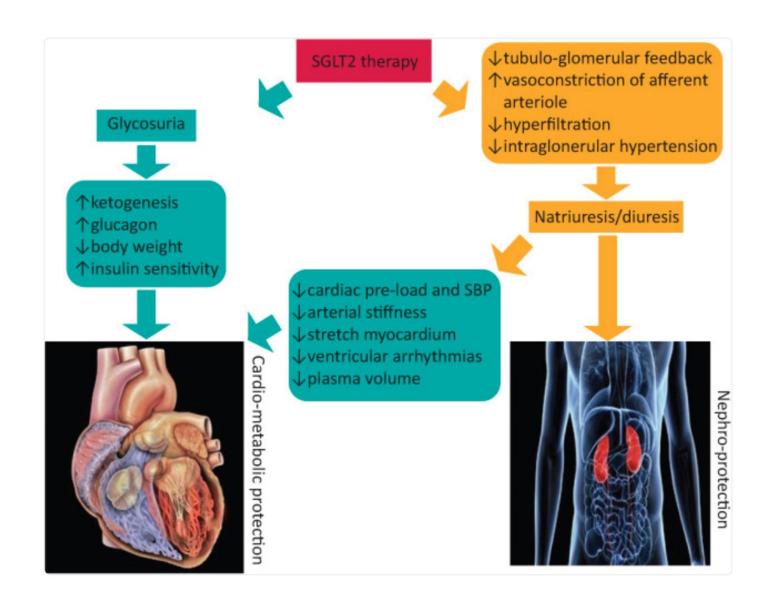

Glucose filtration and reabsorption

162g/day (40 teaspoons)

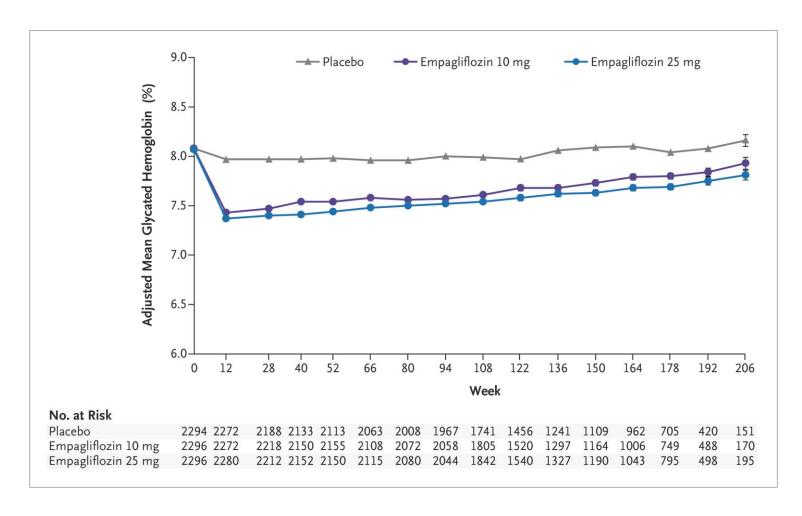


T_{mG} – renal glucose reabsorption capacity

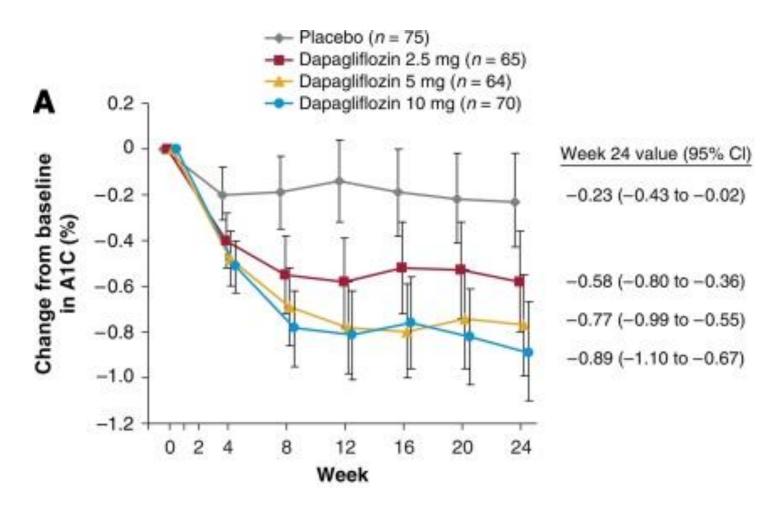
Chao. Clin Diabetes. 2014; doi:10.2337 De Fronzo Diabtes Care 2013; doi: 10.2337



SGLT-2 inh. reduced threshold <4.6-6mM

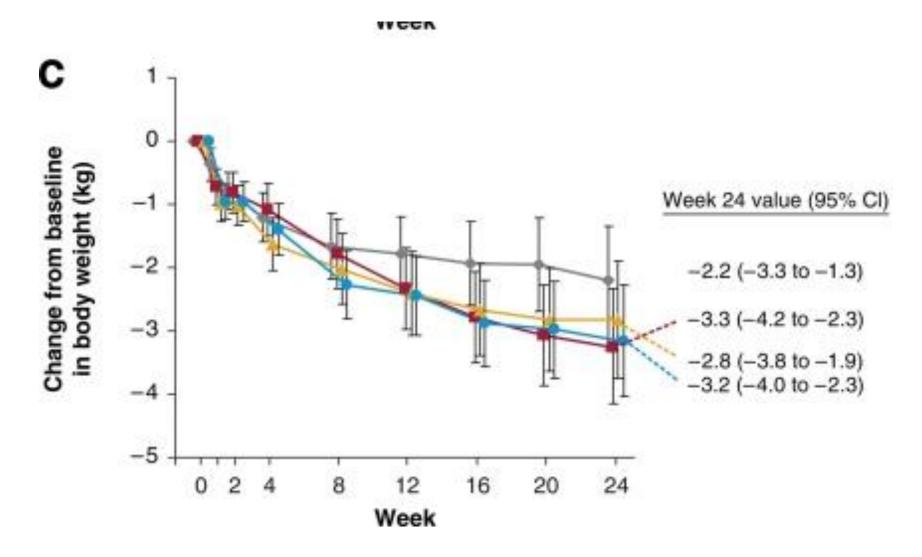

De Fronzo Diabtes Care 2013; doi: 10.2337

SGLT-2 inhibitors – mechanism of action

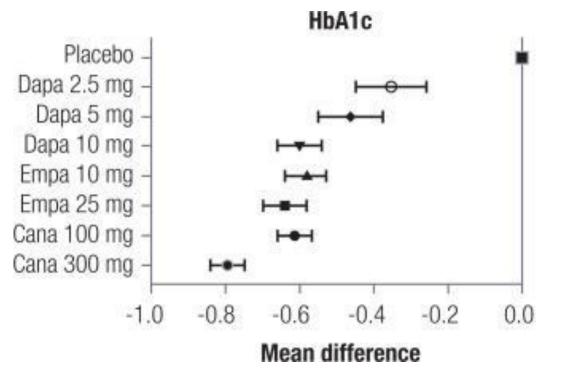


SGLT-2 inhibitors in T2 diabetes

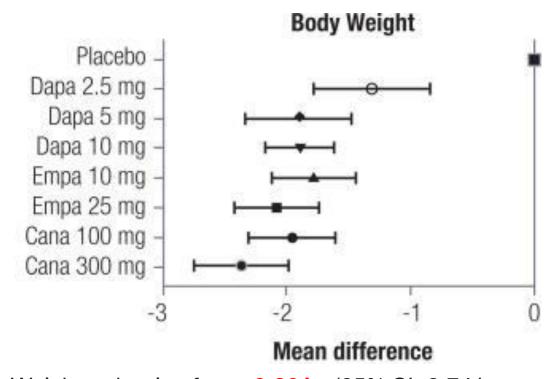
Effect of Empagliflozin on glycaemic control (EMPA-REG OUTCOME)



Effect of Dapagliflozin on glycaemic control

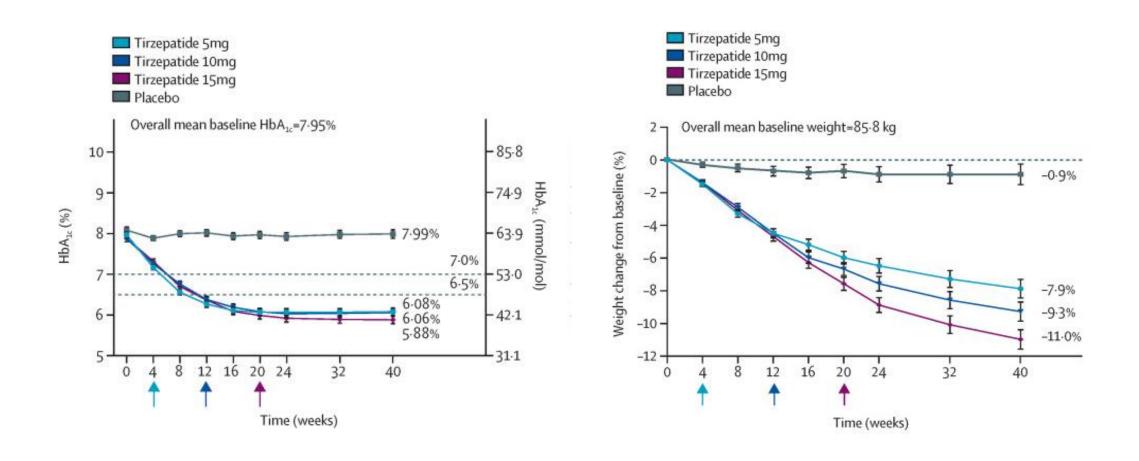

Ferrannnini, et al. Diabetes Care 2010; doi: 10.233/dc10-0612

Effect of Dapagliflozin on weight

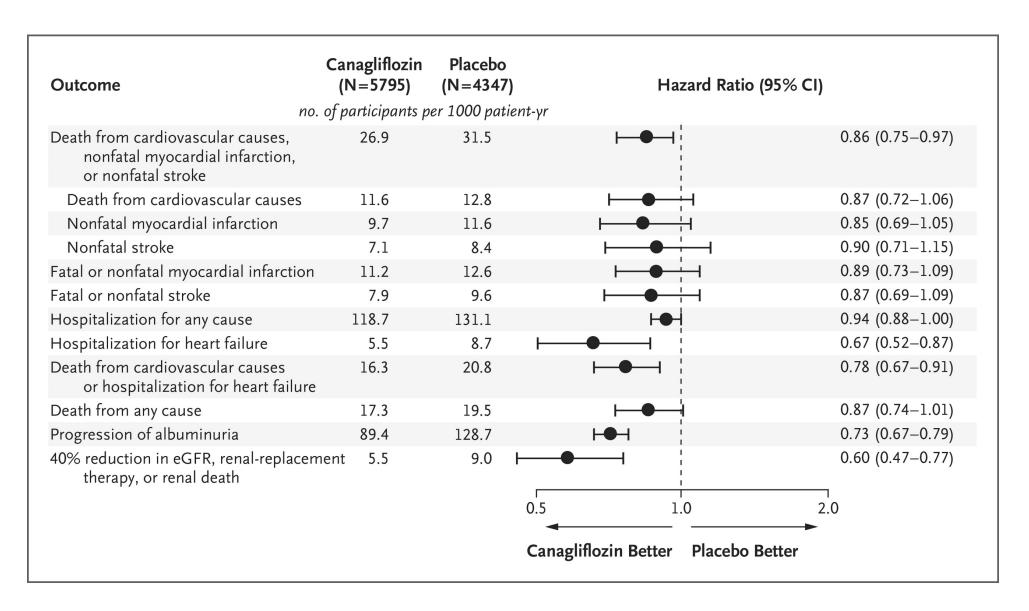


Comparison of the effect of SGLT-2 inhibitors on HbA1c and weight

Trials were published from 2009 to 2018: 16,095 patients



HbA1c reduction of **0.62%** (95% CI -0.66% to -0.59%)



Weight reduction from -2.36 kg (95% CI -2.74 kg to -1.98 kg) to -1.31 kg (95% CI -1.78 kg to -0.84 kg)

As a comparison... effect of Tirzepatide....

Canagliflozin and Cardiovascular and Renal events in T2D - CANVAS

	Cardiovascular outcome trials in type 2 diabetes				Renal outcome trials		Heart failure outcome trials	
Trial drug	CANVAS canagliflozin	DECLARE TIMI-58 dapagliflozin	EMPA-REG OUTCOME	VERTIS-CV ertugliflozir	CREDENCE canagliflozin	DAPA-CKD dapagliflozin	DAPA-HF dapagliflozin	EMPEROR- REDUCED
			empagliflozi	n				empagliflozin
n	10,142	17,160	7,020	8,246	4,401	4,304	4,744	3,730
Baseline participant characteristics	65% established CVD; 35% risk factors for CVD	40% established CVD; 60% risk factors for CVD	All established CVD	All established CVD	All T2D with established diabetic kidney disease	All chronic kidney disease with or without T2D	All HFrEF II–IV with or without T2D	All HFrEF II–IV with or withou T2D
Major adverse CV event (MACE)	↓14% <u></u> 9	\leftrightarrow	↓14% <u>12</u>	\leftrightarrow	↓20% <u></u> 9	n/a	n/a	n/a
CV death and nospitalisation for neart failure	↓22% <u>10</u>	↓17% <u>11</u>	↓34% <u>13</u>	\leftrightarrow	↓31% <u>°</u>	↓29% <u>15</u>	↓25% <u>¹⁶</u>	↓25% <u>1</u> 7
Major adverse renal	↓47% <u></u> 9	↓47% <u>11</u>	↓39% <u>12</u>	\leftrightarrow	↓30% <u>°</u>	↓39% <u>15</u>	\leftrightarrow	↓50% <u>17</u>
Hospitalisation for heart failure	↓33% <u>°</u>	↓27% <u>11</u>	↓35% <u>12</u>	↓30 <u>14</u>	↓39% <u>°</u>	n/a	↓30% <u>¹</u> 6	↓31% <u>17</u>
CV death	\leftrightarrow	\leftrightarrow	↓38% <u>12</u>	\leftrightarrow	\leftrightarrow	\leftrightarrow	↓28% <u>¹⁶</u>	\leftrightarrow
All-cause mortality	\leftrightarrow	\leftrightarrow	↓32% <u>12</u>	\leftrightarrow	\leftrightarrow	↓31% <u>15</u>	↓17% <u>¹⁶</u>	\leftrightarrow

SGLT2 inhibitors in type 2 diabetes

A systematic review and meta-analysis of cardiovascular outcome trials balancing their benefits and risks

Benefit Risk

LBBE

Randomised clinical trials assessing SGLT2i on cardiovascular events in patients with type 2 diabetes trials partici

	C
2,	0
P	Sar
169	Fal
pants	CV


CardioVascular Outcomes Trials	CANVAS	CREDENCE	DECLARE- TIMI	EMPA-REG OUTCOME	VERTIS- CV
Sample size (n)	10,142	4401	17,160	7020	8246
Follow-up (years)	3.6	2.6	4.2	3.1	3
CVD* (%)	65.6	50,4	40.6	99.2	75.9

*at baseline, CVD: cardiovascular disease

- 1. Estimate incident rate ratio
- Estimate spontaneous rate (placebo groups)

Estimate absolute treatment effect

For 1000 patients treated over 3.5 years with SGLT2 inhibitors:

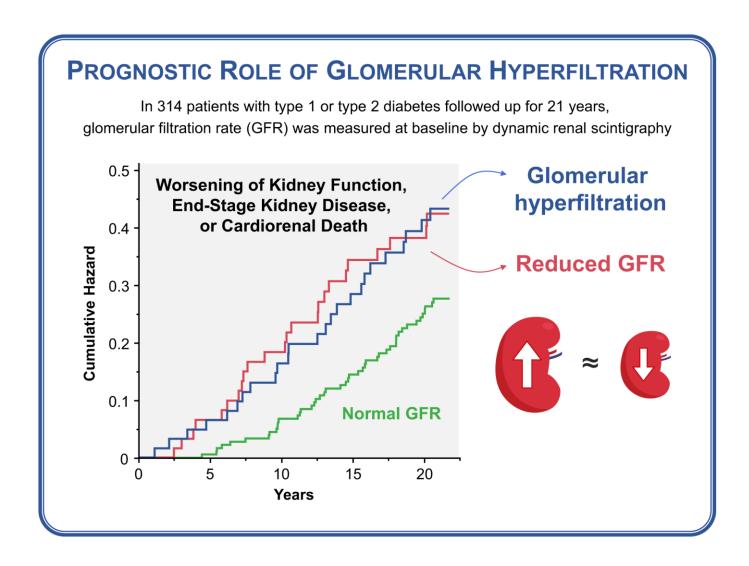
MACE: major adverse cardiovascular events, HHF: hospitalisation for heart failure, ESRD: end-stage renal disease

The risk-benefit ratio of SGLT2i remains in favour of their use in patients with type 2 diabetes and a high risk of CVD

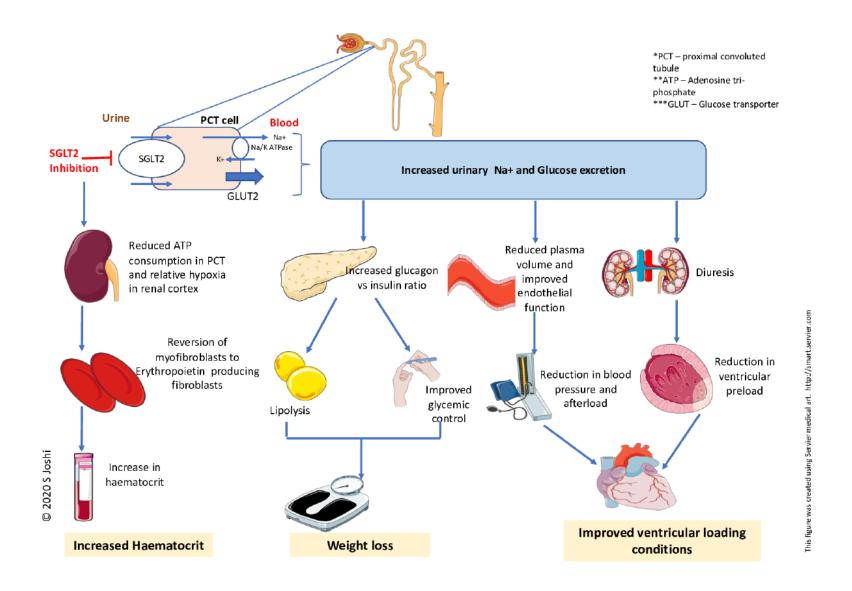
Parts of the figure were drawn by using pictures from Servier Medical Art. Servier Medical Art by Servier is Sciensed under a Creative Commons. Attribution 3.0 Linported Linerae (https://creativecommons.org/licenses/by/3.0/).

Amputations:

unclear


increased

(+2)


Marilly, E., Cottin, J., Cabrera, N. et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia 65, 2000–2010 (2022). https://doi.org/10.1007/s00125-022-05773-8

From: Glomerular Hyperfiltration Predicts Kidney Function Decline and Mortality in Type 1 and Type 2 Diabetes: A 21-Year Longitudinal Study

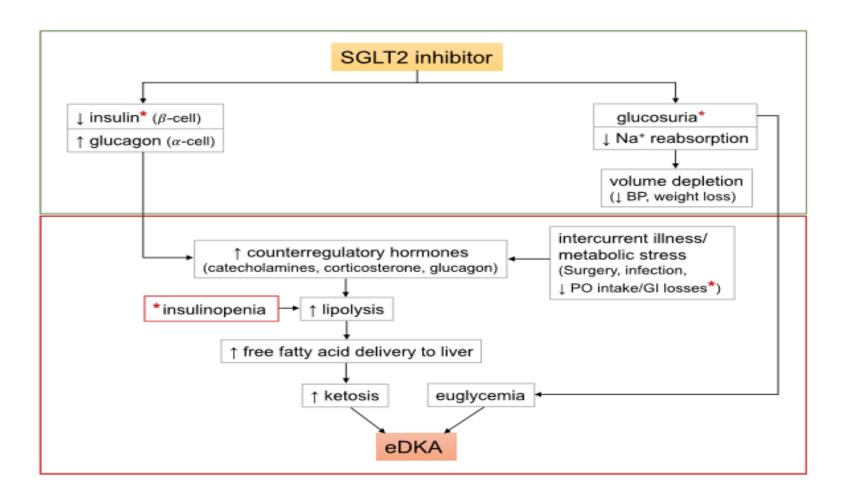
Diabetes Care. 2023;46(4):845-853. doi:10.2337/dc22-2003

Cardiovascular benefit

Joshi et al. Heart 2021 doi: 10.1136/heartjnl-2020-318060

Association of British Clinical Diabetologists (ABCD) and Diabetes UK joint position statement and recommendations for non-diabetes specialists on the use of sodium glucose co-transporter 2 inhibitors in people with type 2 diabetes (January 2021)

- •Adults above 18 years with T2D and one or more of the following are likely to benefit the most:
 - established / high risk of cardiovascular disease
 - chronic kidney disease with albuminuria
 - history of heart failure
 - inadequate glycaemic control with need to minimise hypoglycaemia
 - inadequate glycaemic control with need to minimise weight gain / encourage weight loss.
- •Patients with a clear understanding of the risks associated with SGLT2 inhibitors and how to reduce those risks.


SGLT-2 inhibitors - Adverse effects

Diabetologia (2022) 65:2000-2010

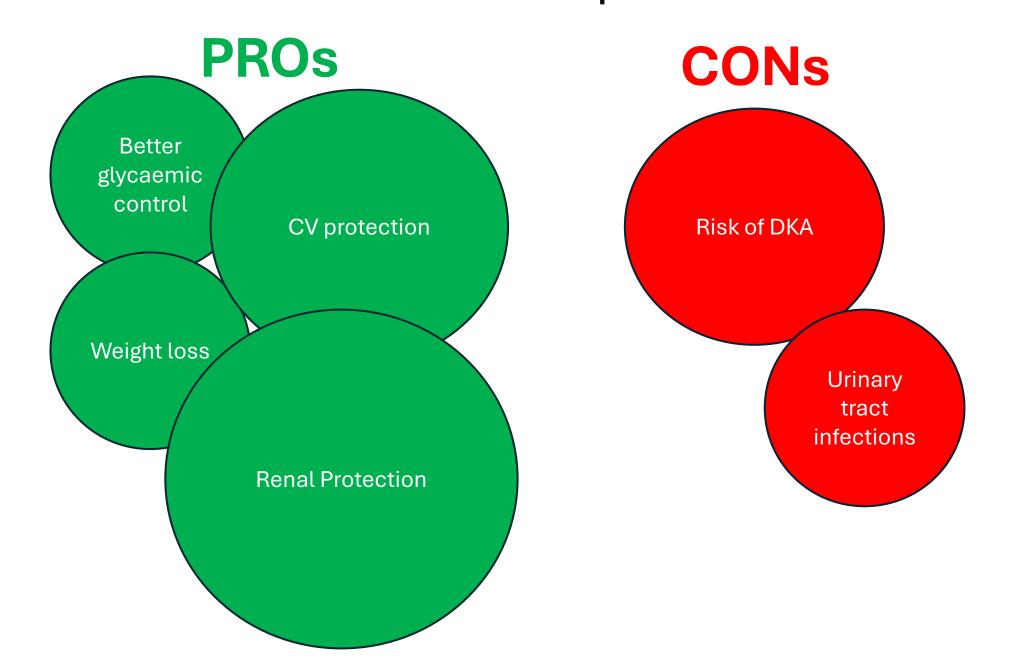
				3	(2022) 03.2000 2010
	Study	Experimental Events Time	Control Events Time		IRR 95% CI
Amputations	Amp EMPA-REG OUTCOME CANVAS DECLARE-TIMI58 CREDENCE VERTIS-CV Fixed effect model Random effects model Heterogeneity: I ² = 52%, τ ²	88 14529.70 130 20862.00 123 36044.40 70 5725.20 111 16497.00 = 0.0292, p = 0.08	53 15649.20 113 36027.60 63 5717.40	*** ** ** ** ** ** ** ** ** ** ** ** **	1.02 [0.71; 1.47] 1.84 [1.34; 2.53] 1.09 [0.84; 1.40] 1.11 [0.79; 1.56] 1.23 [0.87; 1.74] 1.22 [1.06; 1.41] 1.23 [1.00; 1.51]
DKA	Keto EMPA-REG OUTCOME CANVAS DECLARE-TIMI58 CREDENCE VERTIS-CV Fixed effect model Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	13 20862.00 27 36044.40 11 5725.20 19 16497.00	5 15649.20 12 36027.60 1 5717.40	**************************************	1.99 [0.22; 17.81] 1.95 [0.70; 5.47] 2.25 [1.14; 4.44] 10.99 [1.42; 85.08] 4.75 [1.11; 20.37] 2.59 [1.57; 4.27] 2.59 [1.57; 4.27]
GU infections	Gen EMPA-REG OUTCOME CANVAS DECLARE-TIMI58 CREDENCE VERTIS-CV Fixed effect model Random effects model Heterogeneity: $I^2 = 42\%$, τ^2	301 14529.70 890 20862.00 76 36044.40 50 5725.20 297 16497.00 = 0.0206, p = 0.14	202 15649.20 9 36027.60 13 5717.40	0.1 0.51 2 10	3.57 [2.58; 4.93] 3.31 [2.84; 3.85] 8.44 [4.23; 16.84] 3.84 [2.09; 7.07] 3.53 [2.56; 4.88] 3.50 [3.09; 3.95] 3.70 [3.03; 4.53]

Marilly, E., Cottin, J., Cabrera, N. et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia **65**, 2000–2010 (2022). https://doi.org/10.1007/s00125-022-05773-8

Mechanism pf Euglycaemic DKA (Eu DKA)

Association of British Clinical Diabetologists (ABCD) and Diabetes UK joint position statement and recommendations for non-diabetes specialists on the use of sodium glucose co-transporter 2 inhibitors in people with type 2 diabetes (January 2021)

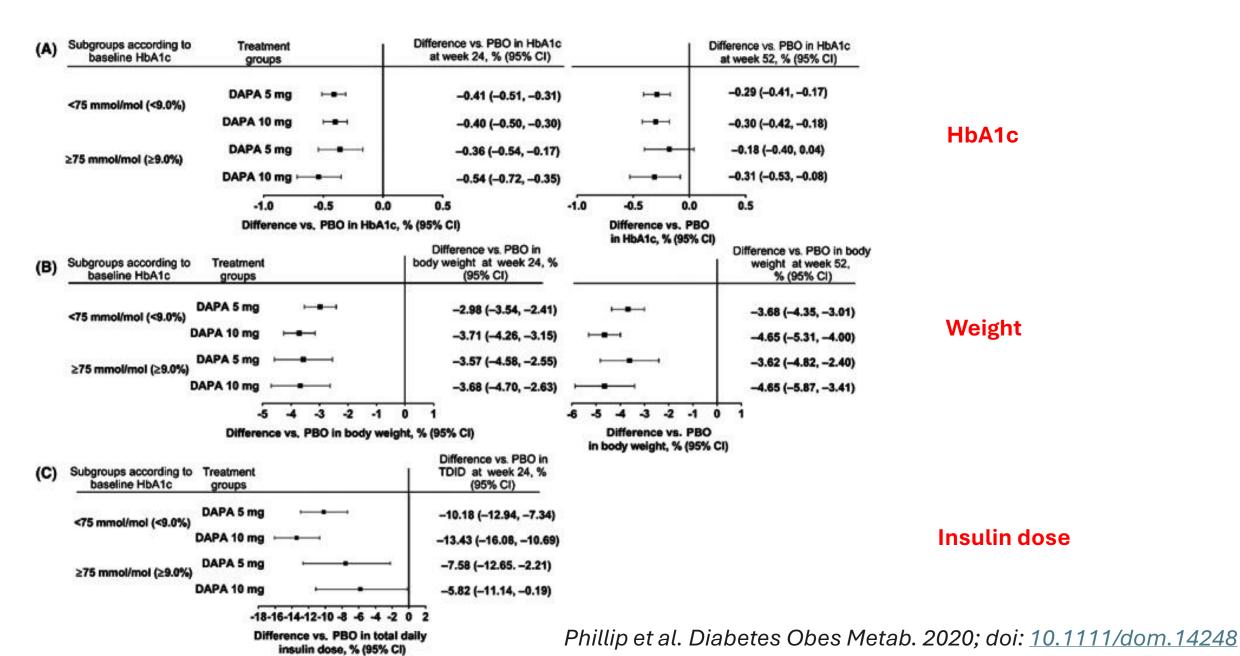
Use with caution in the following situations:


- Ketogenic diet
- •Body mass index under 25 kg/m²
- •High risk of acute effects of hyperglycaemia (such as dehydration due to non-adherence to medication)
- •HbA1c >86 mmol/mol
- Frailty
- •Cognitive impairment as it may interfere with the adequate understanding to take action to prevent and identify DKA
- Recent weight loss
- •Long duration of diabetes (generally over 10 years from diagnosis)

Association of British Clinical Diabetologists (ABCD) and Diabetes UK joint position statement and recommendations for non-diabetes specialists on the use of sodium glucose co-transporter 2 inhibitors in people with type 2 diabetes (January 2021)

- •Suspend SGLT2 inhibitors in the following circumstances:
 - acute medical admission including COVID-19
 - admission for elective surgery or procedure requiring starvation
 - vomiting
 - dehydration.
- •Restart only AFTER patient has been eating normally for AT LEAST 24 hours AND no longer acutely unwell.
- •Alternative diabetes treatment may be required in the interim.

SGLT-2 inhibitors in T1 diabetes

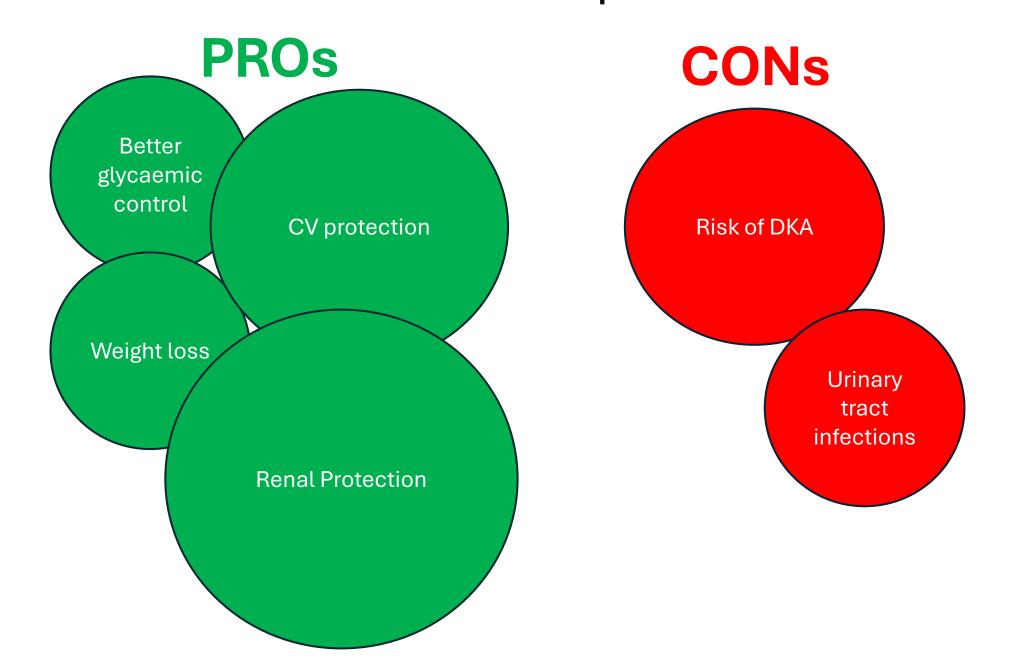

Role of SGLT-2 inhibitors in T1D patients - UNLICENCED


DEPICT-1 and **DEPICT-2** studies

- Randomized, double-blind studies
- Adults with T1D and HbA1c 7.5%-10.5%
- Randomized (1:1:1) to receive dapagliflozin 5 mg, 10 mg or placebo.
- Efficacy analyses included 530, 529 and 532 and safety analysis included 548, 566 and 532 patients in the dapagliflozin 5 mg, 10 mg and placebo groups, respectively.

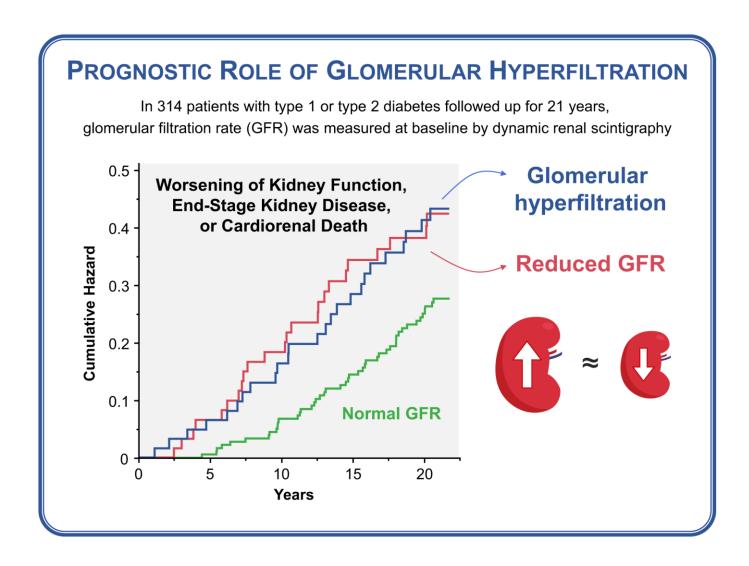
DEPICT 1 and DEPICT 2 – effect on glyc.control/insulin dose/weight by HbA1c

DEPICT 1 and DEPICT 2 – effect on glyc.control/insulin dose/weight by method of insulin delivery


Difference vs. PBO in total daily insulin dose, % (95% CI)

Phillip et al. Diabetes Obes Metab. 2020; doi: 10.1111/dom.14248

DEPICT 1 and DEPICT 2 – side-effects


	Week 24 (short-term period)			Week 52 (short-term + long-term period)			
	DAPA 5 mg (N = 548)	DAPA 10 mg (N = 566)	Placebo (N = 532)	DAPA 5 mg (N = 548)	DAPA 10 mg (N = 566)	Placebo (N = 532)	
AE of special interest ^b							
Adjudicated CV event	2 (0.4)	5 (0.9)	2 (0.4)	2 (0.4)	5 (0.9)	4 (0.8)	
Events of renal function	6 (1.1)	2 (0.4)	0	7 (1.3)	3 (0.5)	4 (0.8)	
Fracture	8 (1.5)	6 (1.1)	5 (0.9)	12 (2.2)	11 (1.9)	12 (2.3)	
Urinary tract infection	37 (6.8)	21 (3.7)	25 (4.7)	57 (10.4)	30 (5.3)	39 (7.3)	
Male ^c	2 (0.8)	2 (0.7)	3 (1.2)	4 (1.7)	4 (1.5)	4 (1.6)	
Female ^d	35 (11.3)	19 (6.5)	22 (7.8)	53 (17.0)	26 (8.9)	35 (12.5)	
Genital infection	61 (11.1)	54 (9.5)	12 (2.3)	73 (13.3)	68 (12.0)	18 (3.4)	
Male ^c	12 (5.1)	12 (4.4)	0	13 (5.5)	17 (6.2)	0	
Female ^d	49 (15.8)	42 (14.3)	12 (4.3)	60 (19.3)	51 (17.4)	18 (6.4)	
SAEs							
≥1 SAE	37 (6.8)	31 (5.5)	20 (3.8)	69 (12.6)	59 (10.4)	46 (8.6)	
≥1 SAE related to study drug	18 (3.3)	12 (2.1)	3 (0.6)	23 (4.2)	20 (3.5)	6 (1.1)	
SAE leading to study discontinuation	15 (2.7)	7 (1.2)	6 (1.1)	22 (4.0)	13 (2.3)	9 (1.7)	
Hypoglycaemia							
≥1 SAE of hypoglycaemia	6 (1.1)	2 (0.4)	2 (0.4)	8 (1.5)	5 (0.9)	5 (0.9)	
Hypoglycaemia leading to study discontinuation	3 (0.5)	0	1 (0.2)	3 (0.5)	1 (0.2)	2 (0.4)	
Ketone-related events ^e							
≥1 ketone-related SAE	14 (2.6)	11 (1.9)	2 (0.4)	28 (5.1)	20 (3.5)	4 (0.8)	
Ketone related SAE leading to study discontinuation	9 (1.6)	7 (1.2)	0	14 (2.6)	11 (1.9)	0	
Death ^f	0	0	1 (0.2)	1 (0.2)	0	1 (0.2)	

Role of SGLT-2 inhibitors in T1D patients - UNLICENCED

From: Glomerular Hyperfiltration Predicts Kidney Function Decline and Mortality in Type 1 and Type 2 Diabetes: A 21-Year Longitudinal Study

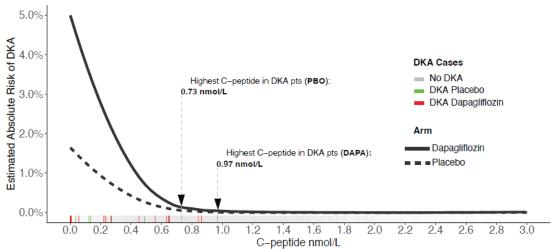
Diabetes Care. 2023;46(4):845-853. doi:10.2337/dc22-2003

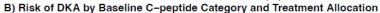
Role of SGLT-2 in T1D patients...

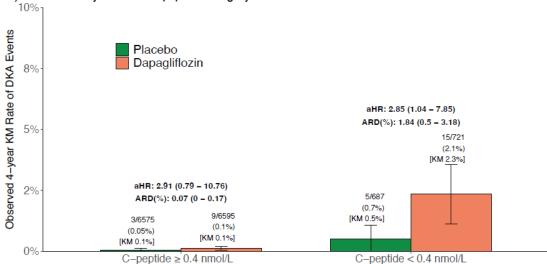
1. Who should be our target population?

2. Can C-peptide help?

Role of SGLT-2 in T1D patients...


1. Who should be our target population?


2. Can C-peptide help?


From: 1896-LB: Clinical Features and C-Peptide Levels Associated with Diabetic Ketoacidosis in Patients with Type 2 Diabetes on Dapagliflozin vs. Placebo—Insights from DECLARE-TIMI 58

Diabetes. 2024;73(Supplement_1). doi:10.2337/db24-1896-LB

For discussion...

- 40-year-old patient with T1D (15 years)
- HbA1c 55 mmol/mol
- No missed insulin doses
- Diabetic nephropathy/heart failure

- 40-year-old patient with T1D (15 years)
- HbA1c 85mmol/mol
- Heart failure

- 40-year-old patient with T1D (15 years)
- HbA1c 120mmol/mol
- Frequently missed insulin doses
- Alcohol excess
- Diabetic nephropathy

Thank you